
Data Parallel C++ - SYCL2020 Features
Data Parallel C++ Essentials

Find out what’s new in Data Parallel C++ Language

2DPC++ Essentials

DPC++ New Features

• Agenda

• DPC++ Language Simplification

• Unified Shared Memory (USM)

• Sub-Groups

• Simplified Reduction

• Hands On

• USM and solving data dependency

• Sub-group collectives and shuffle operations

• Simplification with DPC++ Reduction extension

3DPC++ Essentials

Learning Objectives

Use new DPC++ features like Unified Shared Memory to
simplify heterogeneous programming

Understand advantages of using Sub-groups in DPC++

Simplify reductions in heterogenous programming

4DPC++ Essentials

What is Data Parallel C++?

Data Parallel C++

= C++ and SYCL* standard and extensions

Based on modern C++

▪ C++ productivity benefits and familiar constructs

Standards-based, cross-architecture

▪ Incorporates the SYCL standard for data parallelism and heterogeneous
programming

5DPC++ Essentials

DPC++ Extends SYCL* standard

Enhance Productivity

• Simple things should be simple to express

• Reduce verbosity and programmer burden

Enhance Performance

• Give programmers control over program execution

• Enable hardware-specific features

DPC++: Fast-moving open collaboration feeding into the SYCL* standard

• Open source implementation with goal of upstream LLVM

• DPC++ extensions aim to become core SYCL*, or Khronos* extensions

6DPC++ Essentials

DPC++ = C++ + SYCL* + Extensions

Some of DPC++ Extensions:

• Unified Shared Memory (USM)

• Sub-Groups

• Simplified Reduction

Main goals of DPC++ Extensions are to simplify programming and
achieve performance by exposing hardware features.

7DPC++ Essentials

DPC++ Syntax vs SYCL 2020 Syntax

• The syntax of a DPC++ extension to SYCL 1.2.1 and the
syntax adopted by SYCL 2020 may differ

• Hands-on materials use DPC++ extension syntax for
compatibility with the current DPC++ compiler

• Support for some SYCL 2020 features is already available
in the open-source compiler

8DPC++ Essentials

Language Simplification

DPC++ significantly simplifies SYCL* language by reducing
verbosity

9DPC++ Essentials

buffer buf(data);

q.submit([&] (handler &h){

auto A = accessor(buf, h);

h.parallel_for(N, [=](auto i){ A[i] += 1; });

});
DPC++

buffer<int, 1> buf(data.data(), data.size());

q.submit([&] (handler &h){

auto A = buf.get_access<access::mode::read_write>(h);

h.parallel_for<class kernel>(range<1>(N), [=](id<1> i){ A[i] += 1; });

});
SYCL

DPC++ Language Simplification
Code snippet below shows how SYCL* code can be simplified in DPC++

Lambda name no
longer required

Simple and
Less Verbose

10DPC++ Essentials

Unified Shared Memory (USM)

Unified Shared Memory is pointer-based approach to
memory model for heterogeneous programming

11DPC++ Essentials

Developer View of USM

Developers can reference same memory object in host and device
code with Unified Shared Memory

12DPC++ Essentials

Unified Shared Memory

Unified Shared Memory can be setup as follows:

int *data = malloc_shared<int>(N, q);

You can also use a more familiar C++/C style malloc:

int *data = static_cast<int*>(malloc_shared(N * sizeof(int), q));

13DPC++ Essentials

Unified Shared Memory

Unified Shared Memory enables accessing memory on the host and device with
same pointer reference

queue q;

auto data = malloc_shared<int>(N, q);

for(int i=0;i<N;i++) data[i] = 10;

q.parallel_for(N, [=](auto i){

data[i] += 1;

}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data, q);

Host can initialize

Device can modify

Host has output

Setup Unified
Shared Memory

14DPC++ Essentials

SYCL Buffers Method
Same code but using SYCL buffer memory model instead of USM – requires
defining buffers and accessors and synchronize as required

queue q;

int *data = static_cast(int*)(malloc(N * sizeof(int), q));

for(int i=0;i<N;i++) data[i] = 10;

{

buffer<int, 1> buf(data, range<1>(N));

q.submit([&] (handler &h){

auto A = buf.get_access<access::mode::read_write>(h);

h.parallel_for(range<1>(N), [=](id<1> i){

A[i] += 1;

});

});

}

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data);

Create buffer

Create accessor

Host memory setup

Device can modify

Host has output

Host can initialize

Buffer destruction

15DPC++ Essentials

WHY Unified Shared Memory?

The SYCL* standard provides a Buffer memory abstraction
• Powerful and elegantly expresses data dependences

However…
• Replacing all pointers and arrays with buffers in a C++ program can be a

burden to programmers

USM provides a pointer-based alternative in DPC++

• Simplifies porting to an accelerator

• Gives programmers the desired level of control

• Complementary to buffers

16DPC++ Essentials

Unified Shared Memory (USM)

There are three ways to create USM allocations:

Type Description
Accessible
on Host?

Accessible
on Device?

sycl::malloc_device
Allocations in device memory.

Programmer must explicitly transfer data between host and device.
No Yes

sycl::malloc_host
Allocations in host memory.

Kernels can access these allocations directly.
Yes Yes

sycl::malloc_shared

Allocations can migrate between host and device memory.

Different implementations may provide different guarantees
regarding whether allocations can be accessed by host and device
concurrently.

Yes Yes

17DPC++ Essentials

USM – Explicit Data Transfer

queue q;

int data[N];

for (int i = 0; i < N; i++) data[i] = 10;

int *data_device = malloc_device<int>(N, q);

q.memcpy(data_device, data, sizeof(int) * N).wait();

q.parallel_for(N, [=](auto i) { data_device[i] += 1; }).wait();

q.memcpy(data, data_device, sizeof(int) * N).wait();

for (int i = 0; i < N; i++) std::cout << data[i] << std::endl;

free(data_device, q);

Copy memory explicitly from host
to device using q.memcpy()

Make any data modification on
device

Copy the memory explicitly from
device to host using q.memcpy()

malloc_device() will allocate
memory on device, Host will not
have access

Gives developer full control of
moving memory between host and
device

18DPC++ Essentials

USM – Implicit Data Transfer

queue q;

int *data = malloc_shared<int>(N, q);

for (int i = 0; i < N; i++) data[i] = 10;

q.parallel_for(N, [=](auto i) { data[i] += 1; }).wait();

for (int i = 0; i < N; i++) std::cout << data[i] << std::endl;

free(data, q);

Make any data modification on
device

Host has access to the device
modified memory

malloc_shared() will allocate
memory that can move between
host and device. Host and device
will have access

Memory movement between host
and device is done implicitly

19DPC++ Essentials

Hands-on Coding on Intel DevCloud

USM Implicit and Explicit Data Movement

20DPC++ Essentials

Unified Shared Memory – When to use it?

SYCL* Buffers are powerful and elegant

• Use if the abstraction applies cleanly in your application, and/or buffers aren’t
disruptive to your development

USM provides a familiar pointer-based C++ interface

• Useful when porting C++ code to DPC++, by minimizing changes

• Use shared allocations when porting code, to get functional quickly

• Note that shared allocation is not intended to provide peak performance out of box

• Use explicit USM allocations when controlled data movement is needed

21DPC++ Essentials

USM – Data Dependency in tasks

• When using unified shared memory in multiple kernel tasks,
dependences between operations must be specified using events.

• Programmers may either explicitly wait on event objects or use the
depends_on method inside a command group to specify a list of
events that must complete before a task may begin.

22DPC++ Essentials

USM – Data Dependency in tasks
queue q;

int *data = malloc_shared<int>(N, q);

for(int i=0;i<N;i++) data[i] = 10;

q.parallel_for(N, [=](auto i){

data[i] += 2;

}).wait();

q.parallel_for(N, [=](auto i){

data[i] += 3;

}).wait();

q.parallel_for(N, [=](auto i){

data[i] += 5;

}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data, q);

Explicit wait() used to ensure
data dependency is maintained

*Note that wait() will block
execution on host

1

3

2

23DPC++ Essentials

USM – Data Dependency in tasks
queue q{property::queue::in_order()};

int *data = malloc_shared<int>(N, q);

for(int i=0;i<N;i++) data[i] = 10;

q.parallel_for(N, [=](auto i){

data[i] += 2;

});

q.parallel_for(N, [=](auto i){

data[i] += 3;

});

q.parallel_for(N, [=](auto i){

data[i] += 5;

}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data, q);

Use in_order queue property for
the queue

* Execution will not overlap even
if the tasks have no dependency

1

3

2

24DPC++ Essentials

USM – Data Dependency in tasks
queue q;

int *data = malloc_shared<int>(N, q);

for(int i=0;i<N;i++) data[i] = 10;

auto e1 = q.submit([&] (handler &h){

h.parallel_for(N, [=](auto i){

data[i] += 2;

});

});

auto e2 = q.submit([&] (handler &h){

h.depends_on(e1);

h.parallel_for(N, [=](auto i){

data[i] += 3;

});

});

q.submit([&] (handler &h){

h.depends_on(e2);

h.parallel_for(N, [=](auto i){

data[i] += 5;

});

}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data, q);

Use depends_on() method to let
command group handler know
that specified event should be
complete before specified task
can execute.

1

3

2

25DPC++ Essentials

USM – Data Dependency in tasks
queue q;

int *data1 = malloc_shared<int>(N, q);

int *data2 = malloc_shared<int>(N, q);

for(int i=0;i<N;i++) {data1[i] = 10; data2[i] = 10;}

auto e1 = q.parallel_for(N, [=](auto i){

data1[i] += 2;

});

auto e2 = q.parallel_for(N, [=](auto i){

data2[i] += 3;

});

q.submit([&] (handler &h){

h.depends_on({e1,e2});

h.parallel_for(N, [=](auto i){

data1[i] += data2[i];

});

}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data1, q); free(data2, q);

Use depends_on() is also useful
to specify dependency for
certains and let other tasks
overlap if there is no
dependency.

1

3

2

26DPC++ Essentials

Hands-on Coding on Intel DevCloud

Handling Data Dependency when using USM

27DPC++ Essentials

Unified Shared Memory

• Summary

• What is Unified Shared Memory (USM)?

• Implicit and Explicit data movement between host and device

• Handling data dependency in multiple kernel tasks using wait
event, depends_on method and in_order queue property

28DPC++ Essentials

Sub Groups

Sub-groups are subset of the work-items that are executed
simultaneously or with additional scheduling guarantees.

Leveraging sub-groups will help to map execution to low-level
hardware and may help in achieving higher performance.

29DPC++ Essentials

All work-items in a
work-group are
scheduled on one
subslice, which has
its own local
memory.

All work-items in a sub-group
execute on a single EU thread.

Each work-item in a sub-group is
mapped to a SIMD lane/channel.

How it maps to Hardware (INTEL GEN11 GRAPHICS)

30DPC++ Essentials

Sub Groups

A subset of work-items within a work-group that execute
with additional guarantees and often map to SIMD
hardware.

Why use Sub-groups?

• Work-items in a sub-group can communicate directly using
shuffle operations, without repeated access to local or
global memory, and may provide better performance.

• Work-items in a sub-group have access to sub-group
collectives, providing fast implementations of common
parallel patterns.

31DPC++ Essentials

Sub Groups
Sub-Group = subset of work-items within a work-group.

Parallel execution with ND_RANGE Kernel helps to get access to work-group and sub-group

32DPC++ Essentials

Sub Groups

sub_group class

The sub-group handle can be
obtained from the nd_item
using the get_sub_group()

Once you have the sub-group
handle, you can query for more
information about the sub-
group, do shuffle operations or
use collective functions.

q.parallel_for(nd_range<1>(N,B), [=](nd_item<1> item){

auto sg = item.get_sub_group();

// KERNEL CODE

});

33DPC++ Essentials

Sub Groups

Sub-Group Shuffles

• One of the most useful
features of sub-groups is the
ability to communicate
directly between individual
work-items without explicit
memory operations.

• Shuffle operations enable us
to remove work-group local
memory usage from our
kernels and/or to avoid
unnecessary repeated
accesses to global memory.

h.parallel_for(nd_range<1>(N,B), [=](nd_item<1> item){

auto sg = item.get_sub_group();

size_t i = item.get_global_id(0);

/* Shuffles */

//data[i] = sg.shuffle(data[i], 2);

//data[i] = sg.shuffle_up(0, data[i], 1);

//data[i] = sg.shuffle_down(data[i], 0, 1);

data[i] = sg.shuffle_xor(data[i], 1);

});

34DPC++ Essentials

Sub Groups

Sub-Group Collectives

• The collective functions
provide implementations of
closely-related common
parallel patterns.

• Providing implementations
as library functions increases
developer productivity and
gives implementations the
ability to generate highly
optimized code for
individual target devices.

h.parallel_for(nd_range<1>(N,B), [=](nd_item<1> item){

auto sg = item.get_sub_group();

size_t i = item.get_global_id(0);

/* Collectives */

data[i] = reduce(sg, data[i], ONEAPI::plus<>());

//data[i] = reduce(sg, data[i], ONEAPI::maximum<>());

//data[i] = reduce(sg, data[i], ONEAPI::minimum<>());

});

35DPC++ Essentials

The sub-group size can be configured separately for each kernel.
The set of available sub-group sizes is hardware-specific.

The sub-group size can be tuned even for kernels that do not use the
sub_group class (e.g. to tune for SIMD width and register usage).

Specifying the Sub-Group Size

q.parallel_for(range<1>(N),

[=](id<1> id) [[intel::reqd_sub_group_size(16)]] {

// KERNEL CODE

});

36DPC++ Essentials

Sub-groups in SYCL 2020

SYCL 2020 replaces sub-group shuffles from DPC++ with new algorithms

https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#sec:algorithms

sycl::ONEAPI::sub_group sg = it.get_sub_group();

auto a = sg.shuffle_down(x, 1);
auto b = sg.shuffle_up(x, 1);
auto c = sg.shuffle(x, id);
auto d = sg.shuffle_xor(x, mask);

DPC++
extension

sycl::sub_group sg = it.get_sub_group();

auto a = sycl::shift_group_left(sg, x, 1);
auto b = sycl::shift_group_right(sg, x, 1);
auto c = sycl::select_from_group(sg, x, id);
auto d = sycl::permute_group_by_xor(sg, x, mask);

SYCL
2020

Shuffles as member functions.

Shuffles as free functions.
Names aligned with C++.

37DPC++ Essentials

Hands-on Coding on Intel DevCloud

Sub-Group Shuffles and Collectives

38DPC++ Essentials

Sub Groups

• Summary

• What are Sub-Groups?

• Why are they useful?

• Learned about sub-group shuffle operations and using sub-
group collectives

39DPC++ Essentials

Reductions

A reduction produces a single value by combining multiple
values in an unspecified order.

• Parallelizing reductions can be tricky because of the nature of computation and
accelerator hardware.

• DPC++ introduces a simplified approach for reductions in heterogenous
programming

40DPC++ Essentials

Simple Reduction

Let’s look a simple reduction
example: Addition of N items

A simple for-loop in kernel
function can accomplish
reduction.

But, for-loop is not efficient
and does not take advantage
of parallelism in hardware.

queue q;

int *data = malloc_shared<int>(N, q);

for (int i = 0; i < N; i++) data[i] = i;

q.single_task([=](){

int sum = 0;

for(int i = 0; i < N; i++){

sum += data[i];

}

data[0] = sum;

}).wait();

std::cout << "Sum = " << data[0] << std::endl;

41DPC++ Essentials

Parallelizing Reductions

work-group
executions are
mapped to
Compute Units on
hardware.

Reduction can be parallelized by
first reducing items in each
work-group using ND-range
kernel, multiple work-groups
can execute in parallel
depending on number of
compute units on hardware.

42DPC++ Essentials

Work-Group Reduction

ND-Range kernel can be used
to compute sum of all items in
each work-group

ONEAPI::reduce() function will
simplify reduction of items in a
work-group

A simple for-loop in
single_task kernel function
can then accomplish final
reduction of each work-group
sums.

q.parallel_for(nd_range<1>(N, B), [=](nd_item<1> item){

auto wg = item.get_group();

size_t i = item.get_global_id(0);

//# Adds all elements in work_group using work_group reduce

int sum_wg = ONEAPI::reduce(wg, data[i], ONEAPI::plus<>());

//# write work_group sum to first location for each work_group

if (item.get_local_id(0) == 0) data[i] = sum_wg;

});

q.single_task([=](){

int sum = 0;

for(int i=0;i<N;i+=B){

sum += data[i];

}

data[0] = sum;

});

43DPC++ Essentials

Simplified Reduction

DPC++ introduces reduction
object in parallel_for

ONEAPI::reduction object in
parallel_for encapsulates the
reduction variable, an optional
operator identity and the
reduction operator.

Removes the need for two step
approach using two kernel
functions.

queue q;

auto data = malloc_shared<int>(N, q);

for (int i = 0; i < N; i++) data[i] = i;

auto sum = malloc_shared<int>(1, q);

sum[0] = 0;

q.parallel_for(nd_range<1>{N, B},

ONEAPI::reduction(sum, ONEAPI::plus<>()),

[=](nd_item<1> it, auto& sum) {

int i = it.get_global_id(0);

sum += data[i];

}).wait();

std::cout << "Sum = " << sum[0] << std::endl;

44DPC++ Essentials

SYCL 2020 Reductions

myQueue.submit([&](handler& cgh) {

// Input values to reductions are standard accessors (or USM pointers)
auto inputValues = accessor(valuesBuf, cgh);

// Create temporary objects describing variables with reduction semantics
auto sumReduction = reduction(sumBuf, cgh, plus<>());
auto maxReduction = reduction(maxBuf, cgh, maximum<>());

// parallel_for performs two reduction operations
cgh.parallel_for(range<1>{1024},

sumReduction, maxReduction,
[=](id<1> idx, auto& sum, auto& max) {

sum += inputValues[idx];
max.combine(inputValues[idx]);

});
});

https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#sec:reduction

45DPC++ Essentials

Hands-on Coding on Intel DevCloud

Reduction in DPC++

46DPC++ Essentials

Reductions

• Summary

• What are Reductions?

• Parallelizing Reductions in DPC++

• DPC++ Reduction extension to simplify programming

47DPC++ Essentials

Summary

DPC++ is a standards-based, cross-architecture language to deliver
uncompromised productivity and performance across CPUs and accelerators

• Extends the SYCL standard with new features

New features being developed through a community project

• https://github.com/intel/llvm

• Feel free to open an Issue or submit a PR!

48DPC++ Essentials

Recap

Learned how to use DPC++ new features like Unified Shared Memory,
Sub-Groups and Reduction to simplify programming and achieve
performance

49

