Data Parallel C++ - SYCL2020 Features

Find out what's new in Data Parallel C++ Language

intel.

DPC++ New Features

* Agenda
 DPC++ Language Simplification
* Unified Shared Memory (USM)
* Sub-Groups
« Simplified Reduction

* Hands On
 USM and solving data dependency
* Sub-group collectives and shuffle operations
« Simplification with DPC++ Reduction extension

DPC++ Essentials |nte|. 2

Learning Objectives

Use new DPC++ features like Unified Shared Memory to
simplify heterogeneous programming

Understand advantages of using Sub-groups in DPC++

Simplify reductions in heterogenous programming

DPC++ Essentials |nte|. 3

What is Data Parallel C++7

Data Parallel C++
= C++ and SYCL* standard and extensions

Based on modern C++

= C++ productivity benefits and familiar constructs

Standards-based, cross-architecture

» |ncorporates the SYCL standard for data parallelism and heterogeneous
programming

DPC++ Essentials

intel.

4

DPC++ Extends SYCL* standard

Enhance Productivity

« Simple things should be simple to express

* Reduce verbosity and programmer burden

Enhance Performance
* (Give programmers control over program execution

* Enable hardware-specific features

DPC++: Fast-moving open collaboration feeding into the SYCL* standard

* Open source implementation with goal of upstream LLVM

« DPC++ extensions aim to become core SYCL*, or Khronos* extensions

DPC++ Essentials

intel.

5

DPC++ = C++ + SYCL* + Extensions

Some of DPC++ Extensions:

« Unified Shared Memory (USM)
* Sub-Groups

* Simplified Reduction

Main goals of DPC++ Extensions are to simplify programming and
achieve performance by exposing hardware features.

DPC++ Essentials |nte|. 6

DPC++ Syntax vs SYCL 2020 Syntax

* The syntax of a DPC++ extension to SYCL 1.2.7 and the
syntax adopted by SYCL 2020 may differ

* Hands-on materials use DPC++ extension syntax for
compatibility with the current DPC++ compiler

» Support for some SYCL 2020 features is already available
in the open-source compiler

DPC++ Essentials |nte|. 7

Language Simplification

DPC++ significantly simplifies SYCL* language by reducing
verbosity

DPC++ Essentials |nte|. 8

DPC++ Language Simplification

Code snippet below shows how SYCL* code can be simplified in DPC++

buffer<int, 1> buf(data.data(), data.size());

g.submit([&] (handler &h){

auto A =|buf. get access<access::mode: :read_write>(h);

range<1>(N), [=](id<1> i){ A[i] += 1; });

__ Simpleand
h.parallel for{(N, [=](auto i){ A[i] += 1; }); Less Verbose

})s

DPC++ Essentials |nte|

Unified Shared Memory (USM)

Unified Shared Memory is pointer-based approach to
memory model for heterogeneous programming

intel

Developer View of USM

Developers can reference same memory object in host and device
code with Unified Shared Memory

CPU GPU

HOST MEMORY GPUMEMORY UNIFIED SHARED MEMORY

DPC++ Essentials |nte|. 1

Unified Shared Memory can be setup as follows:

Unified Shared Memory

/

int *data =

malloc_shared<int>(N, q);

\

You can also use a more familiar C++/C style malloc:

/

.

int *data = static cast<int*>(malloc shared(N * sizeof(int), q));

DPC++ Essentials

intel.

12

Unified Shared Memory

Unified Shared Memory enables accessing memory on the host and device with
same pointer reference

queue q;
Setup Unified -
Shared Memory auto data = malloc shared<int>(N, q);
Host can initialize for(int i=0;i<N;i++) data[i] = 10;
g.parallel for(N, [=](auto i){
Device can modify data[i] += 1;
}).wait();
Host has output for(int i=0;i<N;i++) std::cout << data[i] << " "

free(data, q);

DPC++ Essentials |nte| 13

Host memory setup

Host can initialize

Create buffer

Create accessor

Device can modify

Buffer destruction

Host has output

DPC++ Essentials

SYCL Buffers Method

Same code but using SYCL buffer memory model instead of USM — requires
defining buffers and accessors and synchronize as required

queue q;

int *data = static_cast(int*)(malloc(N * sizeof(int), q));]

for(int i=0;i<N;i++) data[i] = 10;]

{

|lbuffer<int, 1> buf(data, range<1>(N));
g.submit([&] (handler &h){

»Jauto A = buf.get access<access::mode::read write>(h);]

h.parallel for(range<1>(N), [=](id<1> i){

[A[i] += 1; |

})s
});
}

for(int i=0;i<N;i++) std::cout << data[i] << " ";]

free(data);

WHY Unified Shared Memory?

The SYCL* standard provides a Buffer memory abstraction
* Powerful and elegantly expresses data dependences

However...

* Replacing all pointers and arrays with buffers in a C++ program can be a
burden to programmers

USM provides a pointer-based alternative in DPC++

« Simplifies porting to an accelerator
* Gives programmers the desired level of control

 Complementary to buffers

DPC++ Essentials ||"\te|~ 15

Unified Shared Memory (USM)

'here are three ways to create USM allocations:

Type

sycl::malloc _device

sycl::malloc_host

sycl::malloc_shared

DPC++ Essentials

Description

Allocations in device memory.

Programmer must explicitly transfer data between host and device.

Allocations in host memory.

Kernels can access these allocations directly.
Allocations can migrate between host and device memory.
Different implementations may provide different guarantees

regarding whether allocations can be accessed by host and device
concurrently.

Accessible | Accessible

on Host?

on Device?

intel.

16

USM - Explicit Data Transfer

Gives developer full control of
moving memory between host and
device

queue q;

int data[N];
: . for (int i = 0; i < N; i++) data[i] = 10;
malloc_device() will allocate

memory on device, Host will not int *data_device —[malloc devicdint>(N, q);
have access

(data_device, data, sizeof(int) * N).wait();

Copy memory explicitly from host

to device USing qmemcpy() q.parallel for(N, [=](auto i) { }).wait();
Make any data modification on q(data, data_device, sizeof(int) * N).wait();
device

o for (int 1 = 0; 1 < N; i++) std::cout << data[i] <« std::endl;
Copy the memory explicitly from free(data_device, q);
device to host using g.memcpy()

DPC++ Essentials |nte| 17

USM — Implicit Data Transfer

Memory movement between host
and device is done implicitly

malloc_shared() will allocate queue g;
memory that can move between

host and device. Host and device int *data =(malloc_sharedkint>(N, q);

W|[l have access for (int i = 0; i < N; i++) data[i] = 10;
Make any data modification on -parallel_for(N, [=1(auto 1) {[datald] += 1;]}) wait();
Sl for (int i = @; i < N; i++) std::cout <<<< std::endl;

free(data, q);

Host has access to the device
modified memory

DPC++ Essentials |nte| 18

Hands-on Coding on Intel DevCloud

USM Implicit and Explicit Data Movement

intel.

Unified Shared Memory — When to use it?

SYCL* Buffers are powerful and elegant

« Use if the abstraction applies cleanly in your application, and/or buffers aren't
disruptive to your development

USM provides a tamiliar pointer-based C++ interface

* Useful when porting C++ code to DPC++, by minimizing changes
« Use shared allocations when porting code, to get functional quickly
* Note that shared allocation is not intended to provide peak performance out of box

» Use explicit USM allocations when controlled data movement is needed

DPC++ Essentials ||"\te|~ 20

USM - Data Dependency in tasks

* When using unified shared memory in multiple kernel tasks,
dependences between operations must be specified using events.

* Programmers may either explicitly wait on event objects or use the
depends on method inside a command group to specify a list of
events that must complete before a task may begin.

DPC++ Essentials ||"\te|~ 21

USM - Data Dependency in tasks

queue q;
int *= malloc_shared<int>(N, q);
Explicit wait() used to ensure for(int i=0;i<N;i++) data[i] = 10;

data dependency is maintained

g.parallel for(N, [=](auto i){
PEEEe0;)

g.parallel for(N, [=](auto i){
data[i] += 3;

*Note that wait() will block
execution on host

Dtz]

g.parallel for(N, [=](auto i){

data[i] += 5;

}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data, q);

DPC++ Essentials |nte| 22

USM — Data Dependency in tasks

queue qg{property::queue::in_order()};

int malloc_shared<int>(N, q);
Use in_order queue property for REiCUEEI S HEORLIEVEEEE

the queue

g.parallel for(N, [=](auto i){

}s
* Execution will not overlap even
g.parallel for(N, [=](auto i){

If the tasks have no dependency

1)

g.parallel for(N, [=](auto i){

data[i] += 5;

}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data, q);

DPC++ Essentials |nte| 23

USM — Data Dependency in tasks

Use depends on() method to let
command group handler know
that specified event should be
complete before specified task
can execute.

DPC++ Essentials

queue q;

int= malloc_shared<int>(N, q);

for(int i=0;i<N;i++) data[i] = 10;

= g.submit([&] (handler &h){

h.parallel for(N, [=](auto i){

= ¢.submit([&] (handler &h){

h.depends_on(el);

h.parallel for(N, [=](auto i){
})s

})s
g.submit([&] (handler &h){

h.depends_on(e2);

h.parallel for(N, [=](auto i){
1)
}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data, q);

)

intel.

24

USM — Data Dependency in tasks

queue q;

in= malloc_shared<int>(N, q);

Use depends_on() is also useful R EECICE RS UROF
1[0 Spec|fy dependency for for(int i=0;i<N;i++) {datal[i] = 10; data2[i] = 10;}

auto el = g.parallel for(N, [=](auto i){

certains and let other tasks

overlap if there is no 1

auto e2 = qg.parallel_for(N, [=](auto i){

dependency.

}s
g.submit([&] (handler &h){

h.parallel for(N, [=](auto i){
datal[i] += data2[i];
})s
}).wait();
for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(datal, q); free(data2, q);

DPC++ Essentials |nte| 25

Hands-on Coding on Intel DevCloud

Handling Data Dependency when using USM

intel

Unified Shared Memory

* Summary

* What is Unified Shared Memory (USM)?

* Implicit and Explicit data movement between host and device

« Handling data dependency in multiple kernel tasks using wait
event, depends_on method and in_order queue property

DPC++ Essentials

intel #

Sub Groups

Sub-groups are subset of the work-items that are executed
simultaneously or with additional scheduling guarantees.

Leveraging sub-groups will help to map execution to low-level
hardware and may help in achieving higher performance.

DPC++ Essentials |nte|_ 28

How It Malps to Hardware (INTEL GEN11 GRAPHICS)

:

i : HHHE

All work-items in a sub-group
execute on a single EU thread.

22|22

Each work-item in a sub-group is
mapped to a SIMD lane/channel.

.
H

DPC++ Essentials |nte|, 29

Sub Groups

A subset of work-items within a work-group that execute
with additional guarantees and often map to SIMD
hardware.

Why use Sub-groups?

« Work-items in a sub-group can communicate directly using
shuffle operations, without repeated access to local or
global memory, and may provide better performance.

 Work-items in a sub-group have access to sub-group
collectives, providing fast implementations of common
parallel patterns.

DPC++ Essentials

sub-group of
4 work-items

dimension 1
of work-group

)/'dimension 0

+“—>
dimension 2

of work-group

of work-group

Work-group

intel.

30

Sub Groups

Sub-Group = subset of work-items within a work-group.

Parallel execution with ND_RANGE Kernel helps to get access to work-group and sub-group

sub-group of work-group of
4 work-items (4,4,4) work-items - -

(7 7 7 7
- dimension 1

of work-group dimension 1

dlmensmn 0 / of ND-range
of sub-group dimension 0

4 —>
dimension 2

of work-group

of work-group

dimension 2
of ND-range

Work-item Sub-group Work-group ND-Range

DPC++ Essentials |nte|, 31

Sub Groups

sub_group class

The sub-group handle can be
obtained from the nd item q.parallel for(nd_range<1>(N,B), [=](nd_item<1> item){

using the get_sub_group()

auto sg 4 item.get sub _group();

Once you have the sub-group // KERNEL CODE
handle, you can query for more
iInformation about the sub-
group, do shuffle operations or
use collective functions.

DPC++ Essentials |nte| 32

Sub Groups

Sub—Group Shuffles h.parallel for(nd range<1>(N,B), [=](nd_item<1> item){
* One of the most useful auto sg = item.get_sub_group();

features of sub-groups is the size t i = item.get global id(8);

ability to communicate

directly between individual /% Shuffles */
work-items without explicit

: //data[i] sg.shuffle(data[i], 2);
memory opera’uons.

//data[i] sg.shuffle up(0@, data[i], 1);

* Shuffle operations enable us //data[i] = sg.shuffle down(data[i], @, 1);
to remove work-group local data[i] =
memory usage from our ,
kernels and/or to avoid
unnecessary repeated
accesses to global memory.

N nnnnnnnn

/v ¥ % ¥ % ¥
shuffle xor (x, mask): n

DPC++ Essentials |nte|. 33

Sub Groups

Sub-Group Collectives

* The collective functions
provide implementations of
closely-related common
parallel patterns.

* Providing implementations
as library functions increases
developer productivity and
gives implementations the
ability to generate highly
optimized code for
individual target devices.

DPC++ Essentials

h.parallel for(nd range<1>(N,B), [=](nd_item<1> item){

auto sg = item.get sub group();

size t i = item.get global id(9);

/* Collectives */

data[i] =|reduce(sg, data[i], ONEAPI::plus<>());

//data[i] = reduce(sg, data[i], ONEAPI::maximum<>());

//data[i] = reduce(sg, data[i], ONEAPI::minimum<>());

intel =

Specitying the Sub-Group Size

The sub-group size can be configured separately for each kernel.
The set of available sub-group sizes is hardware-specific.

g.parallel for(range<1>(N),

[=](id<1> id) |[[intel::reqd sub_group size(16)]] |{

// KERNEL CODE
})s

The sub-group size can be tuned even for kernels that do not use the
sub_group class (e.g. to tune for SIMD width and register usage).

DPC++ Essentials |nte|

35

Sub-groups in SYCL 2020

SYCL 2020 replaces sub-group shuffles from DPC++ with new algorithms

: :ONEAPI::sub_group sg = it.get sub_group();

DPC++ = .
: _ zg'zﬂﬂiﬁg—ﬂ‘”{ﬂ(x;)?)’ Shuffles as member functions.
extension - >B- SUPAX, (20
= sg.shuffle(x, id);
= sg.shuffle xor(x, mask);
::sub_group sg = it.get sub group();

SYCL sycl::shift_group left(sg, x, 1); Shuffles as free functions.
2020 sycl::shift_group_right(sg, x, 1); Names aligned with C++.

sycl::select_from_group(sg, x, id);
sycl::permute_group by xor(sg, x, mask);

https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#sec:algorithms

DPC++ Essentials |nte|

36

Hands-on Coding on Intel DevCloud

Sub-Group Shuffles and Collectives

intel

Sub Groups

* Summary
* What are Sub-Groups?
* Why are they useful?

* |earned about sub-group shuffle operations and using sub-
group collectives

DPC++ Essentials |nte|. 38

Reductions

A reduction produces a single value by combining multiple
values in an unspecified order.

» Parallelizing reductions can be tricky because of the nature of computation and
accelerator hardware.

 DPC++ introduces a simplified approach for reductions in heterogenous
programming

DPC++ Essentials |nte|_ 39

Simple Reduction

Let's look a simple reduction A G
example Addlthn OfN ItemS int *data = malloc_shared<int>(N, q);

for (int i = @; i < N; i++) data[i] = i;

g.single task([=]1(){

int sum = 0;

A S|m'ple for-loop in Kemel ror(int 1= 0 1< N5 1ee)q
function can accomplish sun += data[i];
reduction. }

data[@] = sum;

But, for-loop is not efficient A

and doeS aleXt take advaﬂtage std::cout << "Sum = " << data[@] << std
of parallelism in hardware.

DPC++ Essentials |nte| 40

Parallelizing Reductions

Reduction can be parallelized by

first reducing items in each
work-group using ND-range
kernel, multiple work-groups

can execute in parallel

depending on hnumber of

compute units on hardware.

DPC++ Essentials

intel.

41

Work-Group Reduction

ND-Range kernel can be used
to compute sum of all items in
each work-group

ONEAPI::reduce() function will
simplify reduction of items in a
work-group

A simple for-loop in

single task kernel function
can then accomplish final
reduction of each work-group
sums.

DPC++ Essentials

g.parallel for(nd_range<1>(N, B), [=](nd_item<1> item){

auto wg = item.get group();

size t i = item.get global id(9);

//# Adds all elements in work_group using work_group reduce

int sum_wg = ONEAPI::reduce(wg, data[i], ONEAPI::plus<>());

//# write work group sum to first location for each work group
if (item.get local id(@) == @) data[i] = sum_wg;
})s

g.single task([=]1(){
int sum = 0;
for(int i=0;i<N;i+=B){
sum += data[i];
}
data[@] = sum;
})s

intel.

42

Simplified Reduction

DPC++ introduces reduction
object in parallel for

ONEAPI::reduction object in
parallel for encapsulates the
reduction variable, an optional
operator identity and the
reduction operator.

Removes the need for two step
approach using two kernel
functions.

DPC++ Essentials

queue q;
auto data = malloc_shared<int>(N, q);

for (int i = @; i < N; i++) data[i] = i;

auto sum = malloc_shared<int>(1, q);

sum[@] = 0;

g.parallel for(nd_range<1>{N, B},

ONEAPI: :reduction(sum, ONEAPI::plus<>()),

[=](nd_item<1> it, auto& sum) {
int i = it.get global id(9);
sum += data[i];

}).wait();

std::cout << "Sum = " << sum[@] << std::endl;

intel.

43

SYCL 2020 Reductions

myQueue.submit([&] (handler& cgh) {

// Input values to reductions are standard accessors (or USM pointers)
auto inputValues = accessor(valuesBuf, cgh);

// Create temporary objects describing variables with reduction semantics
auto sumReduction = reduction(sumBuf, cgh, plus<>());
auto maxReduction = reduction(maxBuf, cgh, maximum<>());

// parallel for performs two reduction operations
cgh.parallel for(range<1>{1024},
sumReduction, maxReduction,
[=](id<1> idx, auto& sum, auto& max) {
sum += inputValues[idx];
max.combine(inputValues[idx]);
1)
1)

https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#sec:reduction

DPC++ Essentials

Hands-on Coding on Intel DevCloud

Reduction in DPC++

intel. 4

Reductions

* Summary
* What are Reductions?
» Parallelizing Reductions in DPC++

 DPC++ Reduction extension to simplify programming

DPC++ Essentials

intel.

46

Summary

DPC++ is a standards-based, cross-architecture language to deliver
uncompromised productivity and performance across CPUs and accelerators

* Extends the SYCL standard with new features
New features being developed through a community project

« https://github.com/intel/llvm

* Feel free to open an Issue or submit a PR!

DPC++ Essentials ||"\te|~ 47

Recap

Learned how to use DPC++ new features like Unified Shared Memory,
Sub-Groups and Reduction to simplity programming and achieve
performance

DPC++ Essentials |nte|, 48

